Copyright Notice

All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the author, except in the case of brief quotations embodied in critical reviews and certain other non-commercial uses permitted by copyright law. For permission requests, write to the author, at the address below.

Sakmongkol ak 47

Saturday, 11 October 2008

Sukhois and our air supremacy

Sukhoi 30MK

Are there reasons to question the integrity in the purchase of 18 units of Sukhoi fighter planes? The ones we bought are of the same quality as that bought by India. Yet each unit is more expensive than the ones bought by India.

Sakmongkol remembers one blogger comparing the Malaysian Sukhois with those bought by Vietnam. We can rule out the comparison with Vietnam because they are not of the same quality and caliber.

Lets compare ours with India’s.

RMAF Royal Malaysian Air Force. After a close visit to India's Su-30MKI, signed a deal to purchase 18 of Su-30MKM (M for Malaysia) in May 2003. The first 2 Su-30MKMs were formally handed over in Irkutsk on 23 May 2007, later arrived in Gong Kedak airbase on 21 June. Full squadron of 18 aircraft will be operational by the end of 2008. As part of the deal, the Russians will send a Malaysian astronaut to the ISS.

Indian Air Force, after years of negotiations, decided to purchase 50 Su-30 aircraft and acquired the licence from Sukhoi and Russia to manufacture an additional 140 Su-30MKI aircraft. India is expected to eventually acquire a total of 230 aircraft. Currently 116 Sukhoi-30MKI are in service.

We have established that the Sukhois bought by Malaysia are similar to those bought by India. Accordingly, we therefore expect their prices to be similar. Let us look at the Table below.

Purchase price of Sukhoi by selected countries.

















The figures in the table above suggest the contrary. Malaysia bought the planes at USD50 million each. It is USD10 million more expensive that each unit that India bought. Therefore for 18 units, the extra payment would be USD180million or RM630million.

MINDEF must now explain the reasons for the variation in price. It is inviting negative perceptions for MINDEF. It can also lead to accusations of negligence and financial imprudence leading to the doors of the minister on the 5th Floor of Wisma Pahlawan. .

At first sight, there appears to be no grounds for suspicions. Until one looks at another remote but highly suggestive indicator.

Are there any possibilities that improprieties were involved? A high probability of improprieties can be implied, if corruption in a particular country is widespread. In order to place such a country on this probability gradation, one must look at its ranking in terms of corruption.

Thankfully, there is a world organisation that computes the level of corruption practices in the world and ranks countries according to the extensiveness of corruption. The countries are then ranked in terms of a Corruption Perception Index(CPI).

Thus if a country if ranked high on the corruption index, a priori, there are grounds to believe that any major financial transactions it does, are more likely to be manipulated.

Let us see the rankings of India and Malaysia. The following are the country rankings by Transparency International Corruption Perceptions Index.



2007 CPI Score points.










Lower scores signify a higher degree of corruption. Thus according to the above Table, Vietnam is the most corrupt country with a score of 2.8 and ranked 123 in the world. Between the 3 countries, Malaysia is the least corrupt with a score of 5.1 and ranked 43rd in the world.

From the above Table, one is likely to conclude that India is a MORE corrupt country than Malaysia. In this particular instance, being higher ranked than India on the Transparency Corruption Perceptions Index, is not a virtue. Let us explain.

Logically, if India is MORE corrupt that Malaysia, that would mean, the price of the sukhois she bought may probably have been inflated. In other words, the unit price of a Sukhoi SU 30MK may actually be LOWER than the stated USD40million per unit.

How lower? For argument sake, imagine to price to India was actually USD35million.

If the prices which India bought were already artificially inflated, that could only mean that Malaysia was suckered. Malaysia was overpaying for its Sukhois!.

Or, if the Malaysian authorities were actually aware of the true prices but chose to accommodate the inflated prices, then those officers involved in the purchase did so recklessly or negligently or both.

Assuming that India bought at USD35 million each, that would mean, Malaysia overpaid for its Sukhois at an excess price of USD15 million per unit. Thus for 18 units, it can be assumed that Malaysia overpaid USD270 million or RM945 million.

What does this mean? It means there are strong grounds to assume that Malaysia was overpaying anything between RM945 million or close to RM1 billion for the 18 Sukhois 30 MKM because due care and diligence were NOT exercised.

Indeed, the transaction strongly suggests negligence and financial imprudence of monumental proportions.

Sakmongkol asks will the government create a particular OVERSIGHT COMMITTEE to investigate purchases carried out by MINDEF? The DPM’s credibility is at stake. For he is now the Finance Minister.


Zahar 11 October 2008 at 04:57  

Maaf tapi dalam dunia perniagaan, apabila pembeli membeli dalam jumlah yang banyak, maka dia dapat diskaun untuk pembelian dari pembeli lain yang membeli dengan jumlah yang sedikit.

Dapat dikenal pasti India telah membeli jauh lebih banyak unit helicopter ini dari Rusia.

Kenapa ini jadi satu masalah? Berniaga ni ada macam2, sori lah kalau telah merunsingkan penulis dengan penjelasan ini.

Harap jawaban ini dapat disiarkan dan tidak didelete, terima kasih.

Piggy Singh,  11 October 2008 at 05:31  

Rasanya beli fighter jet ni tak boleh pakai borong sebab each unit requires fixed man hours, experties and technologies.

Perhaps our leaders learnt this from Marcos. During his reign, the country became poorer and was in great debt partly due to excessive arms deal, but late Marcos got richer than ever.

God save Malaysia.

Erotomania 11 October 2008 at 05:33  

Salam Tuan Sakmongkol,

The term that was running in my head as I was reading your posting here is 'bulk discount', before I came across saudara Zahar's comment. Maybe you or some other esteemed visitors care to comment? Thanks. Err.. Saudara Zahar, yang dibeli tu bukan helicopter. Kalau heli harga 50 juta, Pakatan Rakyat dah buat demo besar-besaran kat depan Wisma Pahlawan kot? ;-)

Erotomania 11 October 2008 at 05:37  

Pardon my ignorance, but for a purchase such as this, the Auditor-General's office doesn't bother to check the books?

Anonymous,  11 October 2008 at 05:58  

Adakah sudah diambil kira perbezaan radar, capability, armament dan lain-lain feature?

Mr. X 11 October 2008 at 06:03  

Three new Polls on UMNO Elections: -
1. Who do you want as the new Youth Chief for UMNO?
2. Who do you want as the new Deputy President for UMNO?
3. Should Members of Barisan Nasional converge to form a Single MULTIRACIAL Party?

Zawi 11 October 2008 at 07:16  

Malaysians are left resigned to the fact that every deals carry an excess payment for agent comission. These comissions can be traced back to somebody related to the man sitting in the seat of power back home. In the case of the Sukhoi's purchase we all know who was the recipient abd even the perceived amount received whis is deemed to be a legal transaction however immoral it is. If we wanted it cheap we could have bought it through India who not only purchased it at a lower price but gained some form of transfer of technology. Since saving the rakyat's money was never in our intention, we prefer to pay more. In our case we received a slot for a space traveller which was hyped to be an astronought (is that the right term?) to justify the excessive payment.
To the agent in India, USD5 million per Sukhoi is alot of money already and remember they are buying so many more than our 18 units.
Now you know how some people can afford to buy Chopards and Phatek Philippes to give them away like they are mere Seikos.

sakmongkol AK47 aka Mat Tomoi 11 October 2008 at 08:43  

on bulk discount.
i am aware of the concept of bulk discount.... if you are buying lada kering or bawang besar.

i am trying to explore the possible link between the CPI and the unquestioned and quickly accepted purchase price on our part.
if India got discount and artificially inflated price, then the actual cost must be cheaper.
which makes the price to us, very unfair. kan?

Anonymous,  11 October 2008 at 09:19  

There is no doubt that bulk purchase will be given huge discount. How’s 4 units purchased by Vietnam cost merely 25 million each whilst 18 units by Malaysia cost 50 million each? Can someone here enlightened me? Perhaps as once defended by najib that the extras were for peripherals that customized for Malaysian squadron only. Why so different from india? India doesn’t need such expensive peripherals even with threat from her nuclear armed neighbor Pakistan. Doesnt it cost so much extras to defend ourselves from our surrounding neighbours? Why not we learn from Pak Lah that we don’t need to fight with our neighbours, we just surrender and follow orders as advised but his lieutenants.


shahf tech 11 October 2008 at 10:11  

Assalamualaikum Tuan Hj Ariff,

The purchase of the SU 3- MKM and the SU 30 MKI are so much different in terms of the aircraft specifications, the Indian Defence Industry participation, Aircraft Construction, Support Equipment, Spares and Lat but not least are the weapons that the Malaysian Government purchased.

Below are some of the informations on India's SU 30 MKI.

The basic price of the aircraft that Malaysia purchased is not much different than the India, approximately USD 30 Mil. Therefore total of the aircraft roughly USD 540 mil.

OK that's leave USD 360 million.

Ground Support Equiment
Mechanical Test Benches
Avionic Testing
Instrument Testing
Engine testing
Airframe Testing
Armament Testing
Electrical testing
Electronic Warfare testing

Katalah Tst equipment ni USD 100 million. Tinggal lagi 260 juta.

OK then kita kira Aircraft Major Spares dan Minor Spares.
Ground Support Equipment macam towing barlah dsb Katalah harganya USD 120 million. Tinggallah USD 140 million

OK Peluru Berpandu....
Semi Active Missile
Heat Seeking Missile
Antiship missile
Peluru Bedil
Catridges untuk Chaff and Flares
Ejection Seat
Pylons dsb....

So habislah USD 140 Million. Tak banyak nak ada lagi.

OK Tuan HJ.



Irkut/HAL Su-30MKI
[v2.6][05.May.2006][© VayuSena]

Su-30MKI is a long-range, high-endurance, heavy-class Air Dominance Fighter with multi mission capabilities. It is currently the most advanced version of Su-27 Flanker flying anywhere in the world. The Su-27, which was first produced in the Former Soviet Union starting 1982 is counted among the world's best fighter aircraft even without any upgardes; but some of the the technology and capability that the Su-30MKI boasts has absolutely no parallels across the world's air forces. The Su-30MKI gives its operator, the Indian Air Force, a capability that will remain unmatched by all rivals for the forseeable future.

Currently three squadrons of various Su-30 variants
are operational with the IAF. (More Photos)

This document has been divided into the following sections:

Evolution of the Flanker
Acquisition/Production Plans
The Su-30MKI in the IAF
Airframe and Aerodynamics
Flight Control and Other Avionics
Indian Contribution
Weapons and related Avionics
ECM/Self Defence
Engines and Fuel System
In the News
Dimensions and Weights

Evolution of the Flanker
World aviation today cannot be conceived of without the Su-27, a legendary aircraft. The Su-27 which formed the basic platform that has spawned countless derivatives has became the core of Russia’s combat aviation and Russian arms exports today. The Su-27 is seen as a befitting response by Sukhoi to the challenge of the West - the U.S. F-15 air superiority fighter.

In the fall of 1969, Pavel Sukhoi, head of the Sukhoi Experimental Design Bureau, launched the T-10 project at his own initiative. The designers faced a most challenging task of developing an aircraft that would surpass the U.S. fighter which had overall technological superiority.

On 20-May-1977, famous test pilot Vladimir Ilyushin took the Sukhoi T-10-1 for its first flight from the test center Zhukovski. However, before the aircraft could be put into series production it had to be drastically redesigned. There were very serious reasons for that - the designers of onboard equipment and missiles exceeded weight limits. The redesign work was headed by a design team woven around Mikhail Simonov. (See Mikahil Simonov Interview)

The original Su-27 design was rejected

The Design Bureau and cooperating enterprises were set the task to find bold, unorthodox solutions in the project, and to improve every component of the plane, its onboard equipment and armament.

The Su-27 for the first time incorporated solutions proposed for integrated supersonic designs in the 1950s by brilliant aircraft designer and scientist Robert Bartini (1897-1974). Pavel Sukhoi used Bartini’s ideas in the T-10 design. This is why the Su-27’s load-bearing airframe features high lift, low drag, air flow down-suction throughout the wingspan, and shock-free air flow in the area blending wing and it is leading-edge root extensions. The Su-27 is the world’s only fighter in which leading-edge root extensions reduce, rather than increase, drag. These solutions, combined with perfect design and minimal structural weight, provided much space for fuel and equipment, ensuring an exceptional flight range on internal fuel.

The Su-27 markedly enhanced the Soviet Air Force’s combat potential. NATO immediately saw the difference. In the previous years, the SR-71 reconnaissance aircraft often flew into Soviet airspace over the Kola Peninsula to check readiness of the Soviet Air Defense. The Su-27, with its high flight performance and perfect multichannel avionics system, sharply changed the situation, intercepting SR-71 aircraft in Soviet airspace.

The F-16 fighter is considered by many as an american aerodynamic standard. However, this effort was clearly eclipsed by the remarkable qualities of the Su-27.

The real triumph for the Su-27 came in 1989 when it made its first public appearance at the world’s largest air show Le Bourget near Paris. It was here that the now famous 'Cobra' maneuver was premiered in the West. The pilot at the controls was Victor Pugachev - hence the Cobra is often called the 'Pugachev Cobra'.

A note on the designation 'Su-30MKI': 'Su' stands for a production fighter designed by the USSR/Russia's famed Sukhoi Experimental Designed Bureau. Su-30 derived from the Su-27UB, which is the twin-seat trainer-combat version of the Su-27. Therefore all Su-30 versions are twin seat (except for Su-30KI). 'MK' is a Russian acronym for Mordernised-Commercial (not 'Multirole') while 'I' stands for Indiski(India) in the Su-30MKI, while 'K' stands for Kitei(China) in the Su-30MKK. Names apart, there are many central differences between the Su-30MKK and Su-30MKI

* The sheer number of Su-27 variants is bewildering to say the least. Many developments have been made in 'parallel' over the decades, and hence there is no single timeline for the MKI. This space is not enough for discussing the many variants, and hence only some are discussed here.

The first Su-27 variant with TVC was a Su-27UB designated "T-10-16" or the "LL-PS" (flying testbed - flat nozzle), built by by Sukhoi in 1989.

The Chief Designer for the export Su-30MK is Alexcy Knyshev. According to Knyshev, the Su-30MK is capable of performing all tactical tasks of the Su-24 Fencer deep interdiction tactical bomber and the Su-27 Flanker A/B/C air superiority fighter while having around twice the combat range and 2.5 times the combat effectiveness (Sukhoi numbers).

Russia vigourously promoted the Su-30. It has made regular airshow appearances after its debut at Paris AirShow 1999. However, initially the displayed aircrat was a Su-27UB which only carried a wide variety of air to ground misles (which it could not launch). The weapons were KAB-500KR TV guided bomb, Kh-29T and Kh-59M. At that moment there was no Su-30M nor Su-30MK, only the Su-27PUs were renamed as Su-30 (probably for marketing purposes). The real prototype of Su-30MK was converted from a Su-27PU in 1996. The modification included enlarged fins, the addtion of 2 underwing pylons (now to 8) and the carnard foreplanes similar to those of the Su-35 (or Su-27M).

The Su-30MKI combines the featurs of the Su-37 (Left) and Su-30MK (Right) and adds many more enhancements

The Unstable Longitudal Triplane configuration in a Flanker was seen in the Su-35 or Su-27M. It is in limited service with the VVS-PVO and lacks TVC. TVC was added to the Su-35 and hence the Su-37 (#711) was born. On its debut at Farnborough in 1996, it stunned the world just like the Su-27 did in 1989. So great was its influence, that it stole the show from the Eurofighter, which also made its debut there. The Pilot was Yevgeny Frolov, Hero Of Russia.

The first twin-seat flanker with TVC and canards took off for the first time on July 1, 1997 at the hands V.J. Aver'janov. This prototype '#56' was later re-numbered to T-10MK-1, which was officially the first Su-30MKI prototype. The versions that were ultimately delievered to the IAF (SB019 onwards) bear the designation T10-PMK-01.

Acquisition/Production Plans
The SU-30MKI is the first Russian aircraft designed in collaboration with a foreign customer. It was born when the IAF decided to acquire the Su-30MK and include modifications according to its needs. Its competitor was the Mirage-2000-5, an excellent multirole aircraft in its own right. It had the advantage over the Su-30 given that the IAF was extremely satisfied with the results from the Mirage-2000H. However, the SU-30MKI was found to be a lot cheaper than the Mirage-2000-5, which ultimately proved to be the deciding factor.

The induction of the Su-30 into the IAF is a bit confusing for some. This is due to the fact that three different deals where signed, delays in the program and also due the fact that IAF has been operating Su-30s (since 1997) which are not Su-30MKIs but Su-30MKs. However, since they are being operated by the IAF, they are referred to as Su-30MKIs by some. Here Su-30MKI refers to the final version of the aircraft, and not those which saw service with the IAF since 1997.

On July 24, 1994 an Indian delegation headed by the CAS of the IAF arrived in Russia to evaluate the aircraft.

Deal I (30 Nov 1996) : The IAF signed a US $1462 million (equivalent to Rs 5122 crore) deal with Sukhoi on 30 November 1996 for the delivery of 40 Su-30 aircraft and the associated equipment from the Irkutsk plant in phased manner, spread out over four years - from 1997 to 2000. The contract provided for setting up of a Service Support Centre in India which was to undertake extended second line repair tasks of aircraft, avionics, aero-engines and aggregates to avoid the need to despatch them to the manufacturer.

Under this original contract, Su-30s would be delivered to the IAF in four batches:

The first batch (Su-30MK-I) of 8 aircraft would be delivered in 1997. These were 'standard' Su-30s (a development of the Su-27UB) and contained 100% (probably) Russian components and are primarily sir-superiority aircraft only. These fighters were first delivered to India at Lohegaon AFS in March 1997. They were inducted into the IAF on 11 June 1997 by the then Prime Minister, Inder Kumar Gujral. These planes are currently in service with IAF with serial nos SB001 to SB008 in the No. 24 Hawks squadron based at Lohegaon AFS.

The second batch (Su-30MK-IIs) of another 8 aircraft would be delivered in 1998 and would be fitted with Sextant Avionique's avionics from France, liquid crystal multi-function displays (MFDs), a new flight data recorder, a dual ring laser gyro INS (inertial navigation system) with embedded GPS (Global Positioning Satellite), EW (Electronic Warfare) equipment procured from Israel's IAI (Israeli Aircraft Industries), a new electro-optical targeting system and a RWR (Radar Warning Receiver).

The third batch (Su-30MK-IIIs) of 12 aircraft would be delivered in 1999 and would feature canard foreplanes

The fourth and final batch (Su-30MKIs) of 12 aircraft would be delivered in 2000 and would add the AL-31FP turbofans.

Su-30MK (SB003) sandwiched by a MiG-29 and Jaguar IS at Lohegaon AFS

The first 32 aircraft already delivered would then be upgraded to the Su-30MKI variant, in a phased manner. This plan was thought of because Su-30MKI would be the world's first of its kind, and not all technologies were completely developed in other Russian designs like the Su-35 and Su-37.

Deal II (September 1998) : The IAF decided to buy 10 additional Su-30Ks for US $277.01 million (equivalent to Rs.1187 crore) and thus bring the total number of IAF Su-30s on order to 50. These 10 were originally destined for Indonesia, but due to the financial crisis there Indonesia was unable to take delivery. The first 4 units were delivered in June 1999. These have updated electronic warfare suites, PGM (Precision Guided Munitions) capability and possibly updated radar. These planes are currently in service with IAF with serial nos SB009 to SB018 in the No. 24 Hawks squadron based at Lohegaon AFS.

IAF Su-30K

IAF was to take delivery the 2nd batch of aircraft(Su-30MK-IIs) in 1998. However this was postponed due to delay specifying the requirements for the advanced avionics (French,Israeli and Indian). In March 1998 the agreements were signed with the concerned firms. The crash of the first Su-30MKI prototype T-10PMK-1 ("blue 01") at the Paris airshow did not help matters.

Later it was decided to take delivery of full-standard Su-30MKIs directly and hence doing away with the upgradation and to avoid different grades of one aircraft in service at the same time. Also, the development of the Su-30MKI was nearing completion and first buying some airframes and then upgrading them is an avoidable hassle. Hence, all future deliveries would be Su-30MKIs. The first 4 Su-30MKI arrived in India, again at Lohegaon AFS in semi-knocked-down (SKD) form on June 22, 2002. After assembly,they were test flown initially by Russian test pilots on 25-July-2002. The first flight by an Indian pilot in India happened on 14-Aug-2002. The first 18 aircraft (8 Su-30MK-I and 10 Su- 30K) will be upgraded locally by Hindustan Aeronautics Limited (HAL). The upgrade is to be completed by 2004-2005.

Deal III (October-December 2000) : A Memorandum of Understanding (MoU) was signed allowing the license production of 140 Su-30MKIs and in December 2000, the deal was sealed in Russia at the IAPO factory. The deal combines license production with full technology transfer and hence called a 'Deep License'. For instance, HAL Koraput will also produce 920 AL-31FP engines, while the mainframe and other accessories will be manufactured at HAL's Lucknow and Hyderabad Divisions. Final integration of the aircraft and its test flight would be carried out at HAL's Ozhar (Nasik) Division. The original plans called for the first Su-30MKIs from Nasik to be delivered to the IAF in 2004-05, with production increasing to a peak of 10 aircraft per year from 2007-08 onward at this rate the production would have stretched to 2017-18. At Air Force Commander's Conference held in Oct-2002, the Air Chief Marshal Krishnaswamy, asked the HAL to complete the project in 10 years. This was confirmed by N.R.Mohanty on 12-Nov-2002 while speaking to the press (The Hindu, 13-Nov-2002). Therefore, the new schedule would mean that a maximum of 14 planes per year will be churned out by HAL and hence finishing in 2013. The original costs of Rs. 20,000 Cr remained as it is, even though such an action is expected to raise costs. According to Mohanty, HAL planned to counter the inflation by "outsourcing in low and medium type jobs while the critical items will be HAL's own."

Deal IV (May 2005?) : It was originally planned that the 24 Sqn aircraft will be upgraded to the Su-30MKI Phase-III standard once the delivery is complete. However, the latest Russian offer is to replace these aircraft with newly built airframes at $270 Million in 2007. The reasoning being that some of the aircraft have already aged quite a bit - the first ones entered service in 1997. More importantly, the upgraded airframes would not have the same capability as the new airframes. The offer has reportedly cleared by the Defence Acquisition Council, but the exact status is not known at the moment.

Irkut factory in Russia with what seem to be Su-30MKIs (Left)
and HAL MiG-21 assembly line (Right)

End Result : IAF will eventually acquire a total of 190 Su-30MKI. Out of these 50 will be made in Russia by Irkutsk Aircraft Production Association (IAPO) while the rest will be produced in India by Hindustan Aeronautics Limited (HAL). Production might be increased if necessary. HAL chairman Nalini Ranjan Mohanty has said that the Indian-built Su-30s will cost only about $22.5 million a unit against the current import price of about $37.5 million [Financial Express, 10-Dec-2001].

The first Su-30MKI were delivered by IAPO on June 22, 2002 aboard an An-124. 2 more followed in the same month. The first batch of 10 Su-30MKIs were inducted into the Indian Air Force on 27-Sep-2002 at Lohegaon AFS where the No. 20 Lightnings was constituted. The Phase-III aircraft deliveries were completed by Dec 2004, when around the same time the first HAL assembled Su-30MKIs rolled out. By 2006 it is expected that Phase I and II aircraft will be up to the latest standard.

The 30 Squadron is the latest IAF unit to be equipped with the Su-30MKI.

India's Defence Minister George Fernandes laid the foundation stone of a new HAL factory at Sunabeda (20 kms from Koraput, Orissa) on Dec 15, 2002. This brand new facility is licenced to produce 1200 AL-31FPs. It is said that the manufacture of the AL-31FP engine "involved 31 new technologies required to be adopted and mastered" (

Is the development of the Su-30MKI complete? The originally envisaged goals for the program have been achieved with the delivery of the Phase-III aircraft. However, the development is not being frozen. Future updates are planned - including the airframe and radar (read below).

The Su-30MKI in the IAF
The induction of the Su-30 was'nt without its share of problems. The average servicibility of the 10 Su-30MKs fell to 69% during 1997-1998 and further reduced to 62% 1998-1999. Similarly, the average availability of SU-30K aircraft for operations also declined from six aircraft in 1997-98 to four aircraft in 1998-99, out of total strength of eight aircraft. This happened because the MoD did not order spares for the aircraft and the IAF was using spares supplied at the time of induction - supplied back in 1997. The MoD finally signed the general spares contract in January 1999.

Problems were multiplied due to the poor poduct support from the manufacturers. Apart from delivery of eight SU-30K aircraft during 1997 the manufacturer was required to supply 72 associated equipment like tyres, brake parachutes, specialist vehicles etc. valuing US $ 347.85 million, equivalent to Rs 1252.25 crore during 1997-2000 in a phased manner. The contract explicitly stipulated that equipment to be delivered by the manufacturer would be new, unused, of current production and serviceable. However, the a large percentage of the equipment delivered by the manufacturer between 1997 and 1998 was old, used, corroded, defective and unserviceable, though full payment had been made. For example, the specialist vehicles supplied were old, corroded and inoperable and others items like parachutes were torn and damaged. Aircraft tyres were found to have cut marks during initial inspection. The IAF made 48 claims from sukhoi but only 15 were cleared as of July 1999.

Today the IAF operates 3 squadron worth of Su-30s. The original No 24 Sqn (Su-30MK/K), No. 20 Sqn (Su-30MKI) and No. 30 Sqn (Su-30MKI). The No. 20's pilots and crews were initially drawn from the first Sukhoi unit i.e. No.24 Hawks with which it shared Lohegaon AFS. It was considered to shift 24 Sqn to Chandigarh or Halwara to make space for 30 Sqn. Both Chandigarh and Halwara airbases have experience in handling the Su-30 - it is here that they are based when required to make a flypast on India's annual Republic Day (Jan 26), Air Force Day (Oct 08) and other such occasions. Ultimately 23 Sqn was housed at Bareilly.

Being the first in the service to operate the type, the No 20's task was to develop the doctrine for the MKI’s capabilities and hence was scheduled with a lot of training flights.

A sign of increasing confidence of the IAF in the Su-30MKI is the wider range of tasks being assigned to them - recently it has come to light that the 20 Sqn is also training for the maritime role. This often entails flying for long hours over the sea, which is considered difficult due to lack of navigation aids on the 'ground'.

Unit Location Airframes Serial No.s
No. 24 Sqn AF
Hawks Bareilly AFS
(Bareilly) 08 Su-30MK SB001 to SB008
10 Su-30K SB009 to SB018
No. 20 Sqn AF
Lightnings Lohegaon AFS
(Pune) 10 Su-30MKI Phase-I SB019 to SB028
?? Su-30MKI Phase-II SB029 to ???
No. 30 Sqn AF
Lohegaon AFS
??? Su-30MKI

# Serial Remarks
01 SB001 > Painted in temporary tri-colour scheme for R-Day Parade.
> Flypast @ Su-30MKI Induction ceremony, Lohegaon AFS (27.Sep.2002)
> Ex Cope India 2006, Kalaikunda AFS (Nov 2005)

02 SB002
03 SB003
04 SB004
05 SB005
06 SB006 > Painted in temporary tri-colour scheme for R-Day Parade

07 SB007 > Painted in temporary tri-colour scheme for R-Day Parade.
> Flypast @ Su-30MKI Induction ceremony, Lohegaon AFS (27.Sep.2002)

08 SB008 > Painted in temporary tri-colour scheme for R-Day Parade.

09 SB009
10 SB010 > Deployed to Istres AFB, France (Ex Grauda II, Jun 2005)
> Ex Cope India 2006, Kalaikunda AFS (Nov 2005)

11 SB011
12 SB012
13 SB013 > Flypast @ Su-30MKI Induction ceremony, Lohegaon AFS (27.Sep.2002)
> Deployed to Istres AFB, France (Ex Grauda II, Jun 2005)
> Ex Cope India 2006, Kalaikunda AFS (Nov 2005)

14 SB014 > Deployed to Istres AFB, France (Ex Grauda II, Jun 2005)

15 SB015 > Static display @ Chennai Air Show, Old Meenambakkam Airport (31.Aug.2003)

16 SB016 > Deployed to Istres AFB, France (Ex Grauda II, Jun 2005)
> Ex Cope India 2006, Kalaikunda AFS (Nov 2005)

17 SB017 > Static Display @ Vayu Sena Diwas, Palam AFS (08.Oct.2002)
> Deployed to Istres AFB, France (Ex Grauda II, Jun 2005)
> Ex Cope India 2006, Kalaikunda AFS (Nov 2005)

18 SB018 > Static Display @ Su-30MKI Induction ceremony, Lohegaon AFS (27.Sep.2002)
> Radome was seen in ealier photographs with a light grey colour covering two-thirds of the length
> Static Display; Open Day at AFS Lohegaon
> Deployed to Istres AFB, France (Ex Grauda II, Jun 2005)

Su-30MKI Phase-I
19 SB019
20 SB020
21 SB021 > Static Display @ Begumpet Air Port, Hyderabad (07.May.2003)

22 SB022 > Flying Display @ Aeroindia 2003, Yelahanka AFS, Piloted by 20 Sqn CO Jamwal

23 SB023 > Static Display @ Mumbai Airshow Chatrapathi Shivaji International Air Port (14.Oct.2004)
> Confirmed 20 Sqn

24 SB024 > Flypast @ Su-30MKI Induction ceremony, Lohegaon, Piloted by 20 Sqn CO Jamwal (27.Sep.2002)
>Static display at Nagpur Air Show

25 SB025
26 SB026 > Static Display @ Aeroindia 2003, Yelahanka AFS (05-09.Feb.2003)

27 SB027
28 SB028
Su-30MKI Phase-II
29 SB029
30 SB030
31 SB031
32 SB032
33 SB033
34 SB034
35 SB035 > Aeroindia 2005 Yelahanka AFS - reserve for flying display
> Confirmed 30 Sqn

36 SB036 > Static Display @ Aeroindia 2005 Yelahanka AFS
> Confirmed 30 Sqn

37 SB037
38 SB038
39 SB039
40 SB040 > Flying Display @ Aeroindia 2005 Yelahanka AFS
> Confirmed 30 Sqn

It is unclear how these aircraft have been distributed between the No.20 and No.30 Squadrons.

Su-30MKI Phase-III (Irkut)
41 SB041 > Confirmed 30 Sqn

42 SB042 > Confirmed 30 Sqn

43 SB043
44 SB044
45 SB045
46 SB046
47 SB047
48 SB048
49 SB049
50 SB050
Last delivery Dec 2004. It is unclear how these aircraft have been distributed between the No.20 and No.30 Squadrons.

Su-30MKI Phase-III (HAL)
51 SB101 > First flight Oct 01, 2004.
> Commisioned into IAF 28.Nov.2004
> Ceremonial first flight piloted by P.M.Sergei and Wg Cdr T.R. Ajit Kumar

52 SB102
53 SB103
HAL has targetted FY 2014-15 for delivering the last Su-30MKI. Rate of production is reported to be 13 aircraft per annum [2], which would mean that atleast 20-25 aircraft have already been produced by HAL by the current financial year. However only SB101/2/3 have been sighted so far.

Camouflage Scheme The 24 Sqn airframes (both K and MK series) are all painted in a very pretty blue sky pattern. Some of these these fighters have their numeric serial applied below the cockpit, which is not the practice in the other current aircraft of the Indian Air Force, and generally has never been. Only the Gnat/Ajeet and Vampire fighter aircraft ever carried the serial printed in a large size, but near to the exhaust, nowhere near the nose. The stylized Hawks insignia was also seen in the Su-30MKs at least initially, but it seems that some no longer sport it and it was never painted on the Su-30Ks anyway. Also unusual was the word Hawks in bright red beside the Hawk logo. Only few squadrons have their nicknames written on their aircraft. Such aircraft include MiG-21s of the Ankush sqn. Some 20 Sqn aircraft have a stylized Lightnings insignia, a very welcome change on IAF aircraft in the post-matt-grey era.

At least four airframes of the Su-30MK series were temprarily dressed up in a ceremonial tri-colour scheme. The Dharma Chakra was also painted on the aircrafts' 'backs'. Originally the Su-30MK/Ks had a light grey radome, but over the years some machines have been noticed with a darker shade of grey, though not black. (Pictures)

Untill recently, the IAF never had any uniform camoflage scheme for its fleet, and it appears it was left to the units to decide how their machines looked. This is the reason for the inconsistent paint scheme throughout the IAF. However, since recent times all aircraft and even ground equipment like trucks and tractors also sport the Matt Grey livery.

Some aircraft have been applied with a black coat of paint around the canopy area, to reduce reflection. Airframes identified with this paint are; SB023, SB024, SB035, SB040 and SB102.

Airframe and Aerodynamics
The Su-30MKI is a highly integrated twin-finned aircraft. The airframe is constructed of titanium and high-strength aluminium alloys. The engine nacelles are fitted with trouser fairings to provide a continuous streamlined profile between the nacelles and the tail beams. The fins and horizontal tail consoles are attached to tail beams. The central beam section between the engine nacelles consists of the equipment compartment, fuel tank and the brake parachute container. The fuselage head is of semi-monocoque construction and includes the cockpit, radar compartments and the avionics bay. Su-30MKIs also have a high percentage of composites used in the air-frame - rumoured to be 6% by weight.

The Su-30MKI aerodynamic configuration is an unstable longitudinal triplane. The canard increases the aircraft lifting effectiveness. It deflects automatically and allows high angle-of- attack flights. The integral aerodynamic configuration combined with thrust vectoring results in practically unlimited manoeuvrability and unique taking off and landing characteristics.

The Su-30MKI prototypes '01' (Left) and '06' (Right)

Stability and control are assured by a digital FBW. The canard notably assists in controlling the aircraft at large angles of attack (AoA) and bringing it to a level flight condition. The aircraft has a newly developed wing with increased relative thickness, accommodating a larger amount of fuel. The wing will have high-lift devices featured as deflecting leading edges and flaperons acting the flaps and ailerons. At subsonic flights, the wing profile curvature is changed by a remote control system which deflects the leading edges and flaperons versus the AoA (Angles of Attack).

The Su-30MKI will have a reinforced airframe in order to accommodate a weapons load of 17,650 lb (8,000 kg) compared with half that for the Su-30K, and the maximum takeoff weight is 38,800 kg versus 34,500 kg.

The term "super-maneuverability" was coined by Dr. Wolfgang Herbst, initiator of the USA's X-31 prototype program, in defining controllability up to 60° to 70° Angle-of-Attack with transients of 120° or more.

The Su-30MKI has no AoA limitations: it can fly at even 180 degree AoA and still recover. This high super-agility allows rapid deployment of weapons in any direction as desired by the crew. The addition of another seat means that the pilot is free to concentrate on flying the aircraft while the second pilot can engage targets.

Mikhail Simonov was stung by press criticism that this machine was appearing at airshows doing tailslides and Cobras without any underwing stores. So it was promptly fitted with a representative warload consisting of (from port wingtip) - AA-11, AA-11, AA-10, Kh-31P, 6 x OFAB-100-120 bombs on a MER fitted to the port lower intake, KAB-500KR on centreline pylon, Kh-29T on lower Stbd intake, Kh-59M, RVV-AE, AA-11, AA-11 and still did its full show routine! A similar performance was witnessed at an airshow where the Landing Gear could not retracted in a Su-37, but Yevgeny Frolov still went on do perform the show routine without any changes!

Planned for incorporation into the Su-30MKI fuselage on a progressive basis from 2006 through to 2017 on 114 of the 140 HAL-built Su-30MKI Mk3s are all-composite structures like wing spars and wing boxes, air intakes, fairing skins, fairing blocks, co-cured co-bonded fin and centre-fuselage components, elevators, rudder and its all-composite torque shaft, ailerons, belly fairings, landing gear doors, ceramic thermal barrier linings, and ceramic brake-pads. Interestingly, several such structures are currently being incorporated into the IAF's MiG-29B airframes as well.

The SU-30MKI employs extensive use of Sextant Avionique (now Thales Avionics) components in the cockpit. A total of 6 LCDs, 5 MFD-55s and 1 MFD-66 for displaying information and accepting commands are used. The six LCDs have a wide-screen, offer image-superimposing and are shielded to make them readable even in bright sunlight. All the flight information is displayed on these four LCD displays which include one for piloting and navigation, a tactical situation indicator, and two for display systems information including operating modes and overall operation status. The cockpit also retains some traditional dial displays as standbys.

There is some confusion regarding the HUD. While reports say MKI has VEH-3000 series Holographic HUD from Sextant Avionique, photographic evidence suggests Elbit Systems' SU 967. SU 967 has been designed for large cockpit fighter/attack aircraft and features a 28 degree FOV.

The aircraft is fitted with a satellite navigation system (A-737 GPS compatible), which permits it to make flights in all weathers; day and night. The navigation complex comprises of Thales Totem Inertial Directional System (INS) and short and long range radio navigation systems. It also has a laser attitude and a heading reference system. An automatic flight control system makes all phases of its flight automatic, including the combat employment of its weapons. Once the automatic flight control system receives information from the navigation system, it solves the route flight tasks - involving a flight over the programmed waypoints, the return to the landing airfield, making a pre-landing maneuver and the approach for landing down to an altitude of 60 meters, as well as uses the data supplied from the weapons control and radio guidance command systems to direct the aircraft to the target and accomplish the attack.

Front (left) and Rear (Right) cockpits

The communications equipment comprises secure VHF and HF radio sets, a secured digital telecommunications system, and antenna-feeder assembly. It mounts an automatic noise-proof target data exchange system, which provides for coordination of the actions of several fighter aircraft engaged in a group air combat. The voice radio communication with ground control stations and between aircraft is possible up to a range of 1,500 km in the Su-27SK, and the Su-30MKI should equal it if not better this. The Integrated Information System (IIS) allows the performance of a ground serviceability test of the entire equipment and the location of troubles to an individual plug-in unit. In case of an in-flight failure, the indicator of the integrated information system will provide the pilot with a text message about the failure and recommendations on how to correct it or will dictate further actions. The message is also duplicated by voice.

A two-pilot crew provides higher work efficiency (thanks to distribution of the aircraft handling and armament control functions) as well as the engagement in close and long range combats and the air situation observation. Besides, the same dual control aircraft can be used as a combat and training aircraft. Additionally, the integrated air-borne equipment enables the aircraft to be used as an air command post to control the operation of other aircraft.

In practice, the front seater is the pilot and the back seater is the "Wizzo", the WSO (Weapons Systems Operator). The pilot flies the aircraft and handles air-to-air and some ATG weapons, as well as countermeasures. The WSO takes care of the detailed aspects of navigation, ground radar mapping & target designation, setting up delivery solution for ATG weapons, designating for guided bombs/missiles, ECM, and so on. There are many tasks which overlap; either pilot or WSO can do the job depending on circumstances.

The crew are provided zero-zero KD-36DM ejection seats which have a slightly modified comm/oxygen interface block compared to the Su-27. Rear seat is raised for better visibility. The cockpit will be provided with containers to store food and water reserves, a waste disposal system and increased amounts of oxygen. The KD-36DM ejection seat is inclined at 30º, to help the pilot resist aircraft accelerations in air combat.

Flight Control and Other Avionics
For flight control, reliability and survivability, the aircraft has a FBW with quadruple redundancy. Depending on the flight conditions, signals from the control stick position transmitter or the automatic FCS will be coupled to the remote control amplifiers. Upon updating, depending on the flight speed and altitude, these signals are combined with feedback signals fed by acceleration sensors and rate gyros. The resultant control signals are coupled to the high-speed electro-hydraulic actuators of the stabilizers, rudders and the canard. For greater reliability, all the computers work in parallel. The output signals are compared and, if the difference is significant, the faulty channel is disconnected.

An important part of the FBW is based on a stall warning and barrier mechanism with an individual drive of its own. It prevents development of aircraft stalls through a dramatic increase in the control stick pressure. This allows a pilot to effectively control the aircraft without running the risk of reaching the limit values of AoA and acceleration. The stall control is accomplished by the computer of a signal limiting system, depending on the configuration and loading of the aircraft. The same system sends voice and visual signals, as the aircraft nears a stall condition.

An oft criticised aspect of Russian aircraft in general is their 'poor' servicebility. This is more of a perception, and in capable hands they can return more than satisfactory performance. The Su-30MKI does add some new features regarding this, including self-diagnostic software that will indeed make life a lot easier for the airmen!

For acquiring predictive maintenance capability, the IAF and Rosoboronexport FSUE have joined forces with South Africa 's Aerospace Monitoring And Systems (Pty) Ltd (AMS). Predictive maintenance means the on- and off-board processing of aircraft sub-systems data, resulting in an accurate, conclusive indication of the health and usage status of various airborne systems. The Su-30MKI Mk3's on-board health-and-usage monitoring system (HUMS) not only monitors almost every aircraft system and sub-system, including the avionics sub-systems, it can also act as an engineering data recorder. For the Su-30MKI Mk3, AMS was contracted for providing total HUMS solutions, starting with definition of the IAF's qualitative requirements, followed by systems provision (development and implementation), integration and support phases.

Methods have since been co-developed by AMS and the IAF for the following:

fatigue loading spectra;
fatigue analysis methods;
material fatigue behaviour;
fracture mechanics;
damage tolerance analysis and testing of redundant metallic aircraft structures;
fatigue crack growth analysis;
crack growth, residual strength analyses
aircraft structural integrity programmes;
ageing aircraft issue.

Indian Contribution
The Su-30MKI contains not only Russian, French, South African and Israeli Customer Furnished Equipment (CFE), but also a substantial percentage of Indian designed and manufactured avionics. They took six years to develop from start to MKI. Advanced avionics were developed by DRDO under a project code named "Vetrivale" (a Tamil name for the victorious lance carried by the youthful Lord Karthikeya or Murugan, a son of Parvati and Shiva) in close collaboration with the PSUs and the IAF. Indian avionics have been received and acknowledged enthusiastically by the Russian principals.

The following are the components developed by Indian agencies:

Mission Computer cum Display Processor - MC-486 and DP-30MK (Defence Avionics Research Establishment - DARE)
Radar Computer - RC1 and RC2 (DARE)
Tarang Mk2 Radar Warning Receiver (RWR) + High Accuracy Direction Finding Module (HADF) (DARE
IFF-1410A - Identification Friend or Foe (IFF)
Integrated Communication suite INCOM 1210A (HAL)
Radar Altimeter - RAM-1701 (HAL)
Programmable Signal Processor (PSP) - (LRDE)

The 32-bit Mission Computer performs mission-oriented computations, flight management, reconfiguration-cum-redundancy management and in-flight systems self-tests. In compliance with MIL-STD-1521 and 2167A standards, Ada language has been adopted for the mission computer's software. The other DARE-developed product, the Tarang Mk2 (Tranquil) radar warning receiver, is manufactured by state-owned BEL at its Bangalore facility.

These avionics equipment have also been certified for their airworthiness in meeting the demanding standards of Russian military aviation. The cumulative value of such indigenous avionic equipment is estimated to exceed Rs. 250 lakhs per aircraft. Since the core avionics were developed by a single agency (DRDO) - they have significant commonality of hardware and software amongst them using a modular approach to design. This obviously results in major cost and time savings in development; it also benefits the user in maintenance and spares inventories.

The DRDO has gone a step further and come out with a new design of the Core Avionics Computer (CAC) which can be used with a single module adaptation across many other aircraft platforms. Thus the CAC which is derived from the computers designed for the Su-30MKI will now be the centre piece of the avionics upgrades for the MiG-27 and Jaguar aircraft as well. The CAC was demonstrated by DRDO at the Aero India exhibition at Yelahanka and attracted a good deal of international attention. Taken together with the systems already developed indigenously for the LCA (such as the Digital Flight Control Computer and HUD), clearly Indian avionics have a significant export potential in the burgeoning global market for avionics modernisation.

The navigation/weapons systems from the various countries were integrated by Ramenskoye RPKB.

The forward facing NIIP NO11M Bars (Panther) is a powerful integrated radar sighting system. The N011M is a digital multi-mode dual frequency band radar (X and L Band, NATO D and I). The N011M can function both in air-to-air and air-to-land/sea mode simultaneusly while being tied into a high-precision laser-inertial / GPS navigation system. It is equipped with a modern digital weapons control system as well as anti-jamming features. The aircraft has an opto-electronic surveillance and targeting system which consists of a IR direction finder, laser rangefinder and helmet mounted sight system. The HMS allows the pilot to turn his head in a 90º field of view, lock on to a target and launch the much-feared R-73E missile. The Sura-K HMS for the Su-30MKI has been supplied by the Ukranian Arsenal Company (the same also makes the APK-9 datalink pod for the Kh-59M).

The N011M radar has been under flight testing since 1993, fitted to Su-27M (Su-35) prototype '712'. It employs the same level of technology as the now abandoned N014 radar which was to have equipped Mikoyan's MFI "fifth-generation" fighter and was initiated by Tamerlan Bekirbayev. The nose of the Su-30MKI was modified (compared the Su-27) to accommodate the fixed antenna array and more avionics boxes. The first improved N011M radar for the Su-30MKI was flown on 26-Nov-2000. Note that the N011M is different from the N011 "Mech" radar: the latter is mechanical scanning and equips the No 24 Sqn aircraft.

Antenna diameter is 1m, antenna gain 36dB, the main sidelobe level is -25dB, average sideobe level is -48dB, beamwidth is 2.4 deg with 12 distinct beam shapes. The antenna weighs 100kg

For aircraft N011M has a 350 km search range and a maximum 200 km tracking range, and 60 km in the rear hemisphere. A MiG-21 for instance can be detected at a distance of up to 135 km. Design maximum search range for an F-16 target was 140-160km. A Bars' earlier variant, fitted with a five-kilowatt transmitter, proved to be capable of detecting Su-27 fighters at a range of over 330 km. The radar can track 20 air targets and engage the 4 most threatening targets simultaneously (this capability was introduced in the Indian RC1 and RC2). These targets can include cruise/ballistic missiles and even motionless helicopters. For comparison, Phazotron-NIIR’s Zhuk-MS radar has a range of 150-180km against a fighter and over 300km against a warship. "We can count the number of blades in the engine of the aircraft in sight (by the NO11M) and by that determine its type," NIIP says.

The forward hemisphere is ±90º in azimuth and ±55º in elevation (+/-45 degrees vertical and +/-70 degrees horizontal have also been reported). N011M can withstand up to 5 percent transceiver loss without significant degredation in performance.

The Su-30MKI can function as a 'mini-AWACS' and can act as a director or command post for other aircraft. The target co-ordinates can be transferred automatically to atleast 4 other aircraft. This feature was first seen in the MiG-31 Foxhound, which is equipped with a Zaslon radar.

Radar Computers

Purpose > Facilitate automatic PRF selection of hostile targets moving at blind speeds
> Enhance tracking capability to 8 targets

Characteristics > 486 main processor
> 386 Summit processor
> ARINC 429 Interface
> Dimensions 32cm x 19cm x 19cm
> Weight 14 kg each

RC1 Functions > Interfaced to MCDP through ARINC and MIL-1553 BUS
> Interfaced to RC2 via high speed parallel Q bus
> Processes radar input and passes results to mission computer

RC2 Functions > Interfaced to PSP
> Interfaced to various radar devices and combat computer via Q bus

Ground surveillance modes include mapping (with Doppler beam sharpening), search & track of moving targets, synthetic aperture radar and terrain avoidance. To penetrate enemy defenses, the aircraft can fly at low altitudes using the terrain following and obstacle avoidance feature. It enables the pilot to independently find his position without help from external sources (satellite navigation, etc.); detect ground targets and their AD systems; choose the best approach route to a target with continuous updates fed to the aircraft navigation systems; and provide onboard systems and armament with targeting data.

According to Sukhoi EDB the Su-30MKI is capable of performing all tactical tasks of the Su-24 Fencer deep interdiction tactical bomber and the Su-27 Flanker A/B/C air superiority fighter while having around twice the combat range and atleast 2.5 times the combat effectiveness.

The N011M offers a quantum leap in technology over the earlier Russian radars. Small ground targets, like tanks, can be detected out to 40-50 km. The MiG-29, Su-27 and other fighters can be provided with a ground strike capability only if their radars can operate in the down-looking mode which generates a map of ground surface on a cockpit display (this mode is called the Mapping Mode).

N011M ensures a 20 m resolution detection of large sea targets at a distance up to 400 km, and of small size ones - at a distance of 120 km. Coupled with the air-launched Brahmos-A AShM, the Su-30MKI will become an unchallanged platform for Anti-Ship duties. The Brahmos is a result of a joint collaboration between India and Russia and is a variant of the Yakhont AShM (which has not entered service).

N011M Bars supplied to the IAF have progressively updated capabilities. Future upgradation plans include new gimbals for the antenna mount to increase the field of view to about 90-100 degrees to both sides. New software will enable a Doppler-sharpening mode and the capability to engage up to eight air targets simultaneously. Additionally the capability of the world-best PJ-10 Brahmos missile will be incorporated. The Air launched version of the missile 'Brahmos-A' requires modifications to the airframe due to high weight. As many as three can be carried on the MKI, but only if the weight of the missile can be reduced. Untill then a capability to carry one Brahmos and two Krypton ("mini moskit") missiles is being worked on.

Enter the Irbis. By 2010, when the first totally-built Su-30MKI will roll out from HAL Nasik, it will be equipped with new, active phased-array airborne radar. Called the Irbis (Snow Leopard), it will replace the NO11M. Both the LRDE and Tikhomirov NIIP are co-developing the Irbis at a cost of US$160 million.

Aircraft Radar Remarks
Su-30MKI Phase-I N011M Mk.1 > Only Air-to-Air modes

Su-30MKI Phase-II N011M Mk.2 > Ability to engage targets with four R-77
> Ground mapping
> Ground/Sea target search and lock
> Integrated with Kh-31A and Kh-59ME

Su-30MKI Phase-III N011M Mk.3 > Russian C101 radar computer replaced by Indian processor.
> Ground attack mode with simultaneus air target search
> Integration with Rafael Litening pod

Su-30MKI N011M > 2007 debut
> New gimbals for the moving antenna: +/-100 degrees azimuth & elevation
> New computer: 180 km tracking range

Su-30MKI Irbis > 2010 debut

Weapons and related Avionics
The Su-30MKI combat load is mounted on 12 stations. The maximum advertised combat load is 8000 kg (17,600 lbs). All compatible Russian/Soviet AAMs and AGMs are available to the IAF, which infact has quite a large variety of these weapons. The RVV-AE is not being inducted into the Russian Air Force but have been bought by the IAF. The aircraft features the built-in single-barrel GSh-301 gun (30 mm calibre, 150 rounds).

Over 70 versions of guided and unguided weapon stores may be employed, which allows the aircraft to fly the most diverse tactical missions. Speculation is that the Su-30 can also carry a tactical nuclear payload, though only Jaguar and Mirage aircraft are known to be equipped for the role thus far.

The laser-optical locator system is advertised to include a day and night FLIR capability and is used in conjunction with the Helmet mounted sighting system. The Laser Guided Munitions will be employed in conjunction with the Rafael Litening pod. The APK-9 datalink pod is associated with the Kh-59ME.

The OLS-27 (Izdeliye 36Sh) is a combined IRST/LR device for the Su-27, similar to the MiG-29's KOLS but more sophisticated, using a cooled, broader waveband, sensor. Tracking rate is over 25deg/sec. 50km range in pursuit engagement, 15km head-on. The laser rangefinder operates between 300-3000m for air targets, 300-5000m for ground targets.

Search limits for the OLS-27 are ±60deg azimuth, +60/-15° in elevation. Three different FOVs are used, 60° by 10°, 20° by 5°, and 3° by 3°. Detection range is up to 50km, whilst the laser ranger is effective from 300-3000m. Azimuth tracking is accurate to 5 secs, whilst range data is accurate to 10m. Targets are displayed on the same CRT display as the radar. Weighs 174kg.

The OLS-30 (36Sh-01), is an improved version of OLS-27 developed by UOMZ with a vibration-proof receiver, micro-cryogenic system, improved service life and new software. Perhaps also has TV channel. Range 90km in pursuit, 40km head-on. Possibly the same as Izdeliye-52Sh.

Official Sukhoi Literature - general description for the Su-30 family




Unguided Weapons:

Sample Weapon Configurations and Flight Profile depending on mission:

Air-to-Air Missiles Maximum Pcs
R-27R1 06
R-27P 02
R-27T1 02
R-73 06
Air-to-Surface Missiles Maximum Pcs
Kh-59ME 02
Kh-31P, Kh-31A 04
Kh-29T(TE) 06
Kh-L 06
Guided/Smart Bombs Maximum Pcs
KAB-500KR, KAB-500 OD 06
KAB-1500KR, KAB-1500L 03
Unguided Projectiles Maximum Pcs
S-8KOM, S-80M, S-8MB 04 blocks (80 pcs.)
S-13T, S-13OF 04 blocks (20 pcs.)
S-25 OFM-PU 04
Unguided/Dumb Bombs Maximum Pcs
FAB-500T 08
BETAB-500ShP 08
ODAB-500PM 08
OFAB-250-270 28
OFAB-100-120 32
P-50T 32
RBK-500 bomb clusters with PBE-D 08
Incendiary tanks 3B-500
Other Maximum Pcs
APK-9 (Datalink Pod) 01
UPAZ-1 (IFR Pod) 01
Elta EL/L-8222 (RF Jammer) 01(?)

A Su-30MKI in service with the 20 Sqn sports a live Kh-31P. (Jane's/Simon Watson)

ECM/Self Defence
An integrated ECM system turns on the warning units that provide signals about incoming enemy missiles, a new generation radio recon set, active jamming facilities and radar & heat decoys. It also includes an electronic intelligence unit, a chaff and flare dispenser and a RWR system. The RWR system is an indigenous product developed by DRDO called Tranquil (Tarang Mk2). Tarang is already deployed in IAF MiG-21 Bison and MiG-27ML fighters. Phase-I and Phase-II aircraft have SPO-32 (L-150) Pastel radar-warning receivers and no RF jammers. Latest aircraft are compatible with the Elta EL/M-8222 EW pod and so are the older Su-30MK/Ks.

Engines and Fuel System
The Su-30MKI is powered by the Al-31FP (P for povorotnoye meaning "movable"), which is a development of the Al-37FU (seen in the Su-37 Terminator).

AL-31FP which is designed by the Lyulka Engine Design Bureau (NPO Saturn) is also different from Al-31F (by the same company). The Al-31F is the 'baseline' powerplant found in most Su-27 and its variants, and perhaps in the China's J-10 in the future and lacks TVC. The AL-31FP was only 110Kg heavier and 0.4 m longer than the AL-31F, while the thrust remains the same. Planes equipped with AL-31F can be upgraded to AL-31FP later on without any changes in the airframe. It is being produced now at the Saturn manufacturing facility at Ufa, Russia.

The Al-37FU (FU stands for forsazh-upravlaemoye-sopo or "afterburning-articulating/steerable-nozzle") basically added 2D Thrust Vectoring Control (TVC) Nozzles to the Al-31F. 2D TVC means that the Nozzles can be directed/pointed in 2 axis or directions - up or down. TVC obviuosly makes an aircraft much more maneuverable. Al-31FP builds on the Al-37FU with the capability to vector in 2 planes i.e. thrust can be directed side-ways also. The nozzles of the MKI are capable of deflecting 32 degrees in the horizontal plane and 15 degrees in the vertical plane. This is done by angling them inwards by 15 degrees inwards, which produces a cork-screw effect and thus enhancing the turning capability of the aircraft.

The thrust vectoring is clearly visible in these vidcaps of a Su-37

The TVC nozzles will be made of titanium to reduce the nozzle's weight and can deflect together or differentially to achieve the desired thrust vector for a particular maneuver. The engine designers are also working to reduce the infrared signature for thrust settings below afterburner.

Also, the 2-nozzles can be vectored un-symmetrically, i.e. each nozzle can point at different directions independent from the other nozzle and thus multiplying the effect.The aircraft is capable of near-zero speed airspeed at high angles of attack and super dynamic aerobatics in negative speeds up to 200 km/h.

When at rest, the Al-31FP nozzles point inwards - as is visible above

TVC allows the MKI for example, to rapidly loose speed and turn in any direction and fire its weapons. The complete range of maneuveres possible in the MKI are impossible on any other combat fighter in production. "We even made a corkscrew spin a controllable manoeuvre - the pilot can leave it at any moment by a single motion of the stick that engages thrust-vectoring and aerodynamic surfaces," says Sukhoi's earlier general designer Mikhail Simonov.

Two AL-31FP by-pass thrust-vectoring turbojet reheated engines (25000 kgf full afterburning thrust) ensure a 2M horizontal flight speed (a 1350 km/h ground-level speed) and a rate of climb of 230 m/s. The Mean Time Between Overhaul (MTBO) for the AL-31FP is given at 1,000 hours with a full-life span of 3,000 hours. The titanium nozzle has a MTBO of 500 Hrs.

The Al-31FP improves upon the Al-37FU in two ways:

Firstly, the Al-37FU cannot vector thrust in 2 planes unlike the Al-31FP.

Secondly, the nozzle drive connection is effected now from the aircraft fuel system and not from the aircraft's hydraulic system. The change-over to the fuel system, to control swiveling nozzles, enhances the dependability of the aircraft and its survivability in air combat.

First Cousins: Su-30MKI (Left) and Su-37 (Right)

There is no a strain-gauge engine control stick to change the engine thrust in the cockpit, rather just a conventional engine throttle control lever. The pilot controls the aircraft with help of a standard control stick which is positioned between his legs. On the pilot's right there is a switch which is turned on for performing difficult maneuvers. After the switch-over, the on-board computer determines the level of use of aerodynamic surfaces and swiveling nozzles and their required deflection angles.

Saturn/Lyulka General Designer Victor Chepkin confirmed to Piotr Butowski (Jane's) that work on a three-dimensional (axisymmetrical) TVC nozzle was underway but that it was not planned for the Su-37 in the immediate future. Other future engines from Saturn are Al-31FN and Al-41.

The Su-30MKI has a large range of 3,000 km without refueling which allows for autonomous operations that require high endurance. Also, an inbuilt In-Flight Refueling (IFR) probe that is retracted beside the cockpit during normal operation. The IAF has placed an order for six IL-78MKI Midas refueling aircraft. As of June 2003, the first IL-78MKI had been delivered to the IAF under the newly raised 78 Sqn. Another one was delivered within the next few months.

IL-78MKI refuels two Su-30MKI

A normal fuel load of 5270 kg ensures a 4.5 hour combat mission, and the air refuelling system increases the flight duration up to 10 hours with a range of 8000 km at a cruise height of 11 to 13 km. Thus the endurance of the aircraft is limited solely by the human factor, hence the logic of going for a twin-seat fighter. Prior to the arrival of the IL-78MKI, the average duration of sorties was 1.54 hours varying from a maximum of 2.08 to a minimum of 1.45 hours*. Since the arrival of the IL-78MKI, IAF pilots have flown 10 Hr missions over the Andaman and Nicobar Islands from Pune.

Interestingly, the total time spent in air combat manoeuvre varied from a maximum of 22.04 minutes to a minimum of 4.01 minutes, with an average of 14.04 minutes. In percentage figures, in long duration sorties, the pilot spent 12.5 percent of the time on ACM as compared to the total duration of the sortie. These figures are from studies conducted in 1998 on the un-upgraded Su-30MK variants*.

* See Indian Journal of Aerospace Medicine 1998; 42(2): 6-9

The IAF in co-operation with the Defence Food Research Laboratories (DFRL) has designed "inflight meals" to provide nutrition to pilots flying long duration missions. IAF's Institute of Aerospace Medicine (IAM) personnel like Wg Cdr CK Ranjan and Wg Cdr AD Upadhyaya worked on these meals and their storage. The Mysore-based DFRL has developed nutritious coconut water and pineapple juice, besides ready to eat food like sooji halwa, ribbon and cheese sandwich and mince meat rice, packed specially for high endurance aircraft. The food is nutritiuos and is easy to eat in the cockpit environment, and the pilots can choose their meal.

Engines manufactured were adapted under the grades of fuel used in India.

Many wrongly believe that the Su-27+ cannot perform all maneovres in combat load. To counter such talk designer Mikhail Simonov, at the 1994 Farnborough airshow, sanctioned a Su-30MK to perform the airshow routine with ordnance on all 12 pylons - a total of 7000 kg!! It did a complete fighter-like routine with this asymmetric load - including a tail slide!!.

In-Close, Stay-Close, and Kill-Close strategy is a way defeat the new generation of all-aspect, high-off-boresight missiles such as the R-73, Python 4, MICA-IR, and AIM-9X. Obviously one has to survive the transit from beyond visual range (BVR), to within visual range (WVR), to inside of minimum range. Once there however, both Western and Russian gun systems are capable of all-aspect, high crossing angle kills at ranges inside of 1500 feet.

Russian designers have stated that they believe that the key to dogfight supremacy rests in the pilot's ability to engage the enemy in any position relative to their own aircraft. While TVC permits post-stall maneuvering and pointing which are impossible in conventional aircraft, they are convinced that a rearward facing radar and missiles that can be fired in the aft-quadrant all join to make an unbeatable integrated weapons system.

In the News
Servicability. In September 2003 and again in December of the same year, the local media reported that some of the AL-31F turbofans had to be overhauled prematurely, after completing an average of "700 Hrs", instead of the advertised 1000. The cause of this was described as "nicks" in the turbofan blades, and the whole squadron was reported to be completely "grounded". The IAF dismissed these allegations as only rumours, but admitted that some engines had developed these problems in their blades. Unfortunately, the accuracy of media reporting can be questioned considering that simultaneusly aircraft were appearing all over the country for aerobatic events in public events! In various interviews, IAF Chief ACM Krishnaswamy rejected the media reports as cynicism and stressed that blade nicks, which appear due to pebble ingestion, do happen and there is nothing unusual and specific to the sukhois. There were accompanying rumors that the IAF had even refused to accept a batch of SU-30MKI production, which were simply untrue.

Su-30MKM. In 2003 Malaysia signed up for the delivery of 18 Su-30MKMs for their air force. The Su-30MKM, also to be manufactured by Irkut Corporation, is described as being identical to the MKI, but lacks the Israeli components, replaced instead by French avionics are included. Irkut has also subcontracted the task of manufacturing the canards, stabalisers and fins to HAL. This contract is valued between 25 to 30 Million USD for HAL. These composite parts will be manufactured at HAL Nasik.

An eight-member Royal Malaysian air force team, led by the director of operations, major general Dato Azizan Bin Ariffin, visited the Lohegaon air force base in August 2003, to familiarise themselves with the training and maintenance activities of the advanced Sukhoi-30 MKIs. Training of RMAF personnel is expected to start in 2006 (the contract is yet to be signed [4]). This is not the first time, however, that the IAF has offered assistance to RMAF. During 1994-95, IAF had conducted ground training on MiG-29 aircrafts for their Malaysian counterparts

Su-30 for Algeria. Russia has been contracted by Algeria to supply 28 Su-30 fighters to Algeria. While the configuration is not known, Algeria reportedly wants it to match Su-30MKI standard. Consequently some business is expected to come to Indian avionics manufacturers [3].

Exercises with other Air Forces. In Feb 2004, an IAF-USAF DACT camp was held at Maharajpur AFS, Gwalior. Titled "Ex Cope India 2004"; it was the first time F-15s and Flankers faced off with each other under the public eye. The results were, much to the surprise of many, were heavily in the IAF's favour. Read more about this watershed event elsewhere on this site. Article and here. Since then Su-30MKIs have also exercised with Republic of Singapore Air Force (RSAF) F-16s (Ex Sindex) and USAF F-16s (Ex Cope India 2005).

Brahmos Missile. The Brahmos missile is the world's most lethal AShM. It is capable of low altitude flying at supersonic speeds with maneuvering to defeat defences. Both Air-to-Surface and Air-to-Ship versions are being developed for the IAF. The first trial of the aircraft version of BrahMos will be conducted before December 2007. Only a limited number of aircraft will be modified to carry this missile. [1]

The Su-30s seem to have captured the nation's imagination; they are a favorite of the media and anybody interested in military matters. Public appearences are frequent - both in flypasts as well as static display. And everytime the public is left spellbound. It is should not come as a surprise, that the Su-30MKI has virtually become the mascot of the Indian Air Force and will continue to be one for the coming decades.

Dimensions and Weights
Length 21.9 m
Span 14.7 m
Height 6.4 m
Take-off Weight
Normal 24900 kg
Maximum 38800 kg
Fuel weight, (spec. weight 0.785 g p cu. sm) kg
Normal 5270 kg
Maximum 9640 kg
Max takeoff run with a normal takeoff weight (afterburner) 550 m
Max landing run with a normal landing weight, with a drag parachute 750 m
Max operating overload 9 g

Revision History :

[v1.0] - [02.Aug.2002] - First Upload
[v2.0] - [28.Dec.2003] - Debugged and extensively redone
[v2.1] - [23.may.2004] - News of 30 Sqn formation + photo
[v2.2] - [16.May.2005] - Extensive debugging + latest S/N table
[v2.3] - [20.May.2005] - Details on AMS and planned upgrades
[v2.4] - [29.Jun.2005] - HUD, avionics, radar computer, RF Jammer, S/N table
[v2.5] - [09.Jul.2005] - N011M info, Irbis, Brahmos // Ref Force magazine
[v2.6] - [05.May.2006] - News, S/N Table, Kh-31 pic + References list started (long due!)

Partial List of References :

PTI (2006, April 13), "First trial of BrahMos' aircraft version before Dec 2007"
Mohan, Vijay (2006, Jan 16), "HAL accelerates Su-30 production"
Tribune News Service
Radyuhin, Vladimir (2006, Mar 12), "Russia-Algeria defence deal may benefit India "
The Hindu
BERNAMA (2006, April 25), "Sukhoi's Spare Parts To Arrive Before Planes"

Related Info
The IAF Today : Cope India 2004 article from Vayu
The IAF Today : AWST: 3rd Wing explains Cope India Exercise
The IAF Today : Ex Cope India article from "Inside the Air Force"
The IAF Today : Interview with Mikhail Simonov
The IAF Today : Interview with Victor Chepkin
The IAF Today : Interview with Alexey Fedorov
The IAF Today : Interview with Victor Pugachev
The IAF Today : Su-30MKI Vs F-16C and F/A-18E/F
The IAF Today : How Su-30MK beats the F-15 in USAF Simulations
The IAF Today : Su-30MK Vs Mirage-2000-5
The IAF Today : PhotoFeature - Su-30MKI
The IAF Today : PhotoFeature - Fighters as Flags

Anonymous,  11 October 2008 at 11:55  

Thanks Sakmongkol for bringing up the Sukhoi issue for public discussion. Thanks too to shahftech for indepth technical specs for the SU-30M.

According to a German Technical survey magazine, the Su-30MKI (Indian version) is the best combat fighter-bomber aircraft in the world. It employs a multi-national avionics complex sourced from Israel.
Su-30MK, where "MK" stood for "Modernizirovannyi Kommercheskiy" (Modernized Commercial). The I stands for India.

Sukhoi is a highly flexible multi-role fighter.
The Su-30MK is capable of accomplishing a wide variety of combat missions at significant distances from the home base, in any weather conditions and in severe jamming environment, both by day and by night. The aircraft features autopilot ability at all flight stages including low-altitude flight in terrain-following mode, and individual and group combat employment against air and ground/sea-surface targets. Automatic control system interconnected with the navigation system ensures route flight, target approach, recovery to airfield and landing approach in automatic mode.

A standard Su-30K is estimated at US$34 million which is more than double the cost of an F-16A Fighting Falcon.

A Su-30MKK variant is estimated at US$53 million. This is the Chinese version. Su-30MKK with upgraded electronics that enabled support for anti-ship missiles

Su-30MK of the Indonesian Airforce is the commercial version of Su-30M first revealed in 1993.

Su-30MKM is for us Malaysian.
Based on the MKI, a highly specialised version for Royal Malaysian Air Force with the same platform but a French, South African and Russian combination of avionics. It features head-up displays (HUD), navigational forward-looking IR system (NAVFLIR) and Damocles Laser Designation pod (LDP) from Thales Group of France, MAW-300 missile approach warning sensor (MAWS) and laser warning sensor (LWS) from SAAB AVITRONICS (South Africa, as well as the Russian NIIP N011M BARS PESA radar, electronic warfare (EW) system, optical-location system (OLS) and a glass cockpit.

Su-30MK2 variant for Vietnam with minor modifications.

Highly specialised version for Algeria is similar to the MKI, but will principally be equipped with French and Russian avionics. It will feature head-up and multifunction displays from France.

Mr Sakmongkol,
We must accept the fact that the indian benefits more in terms of the technology transfer whilst us malaysian by sending a surgeon to the ISS. The latter doesn't have much impact in protecting our shores. Therefore, in the long run we should emulate india for the sake of being independent for self defence. during war we may be exhaustive of parts and local specialists. be prepared....


sakmongkol AK47 aka Mat Tomoi 11 October 2008 at 12:33  

mr shaftec,
yours is an asnwer that deserves my utmost respect. salute. but it would be better if you post it as a feature article in blog proper. this would certainly dispell any lingering doubts and suspicions of the public at large.
i deduce from yr answer:-
you are attached to MINDEF
or you are attached at the DPM's office.
that you know me personally- and i thank you for calling me Haji as i am not one yet. perhaps next year, my wife and i will perform the haj.
or would you mind if i repost yr comments on my blog proper so that more can read it?
thank you and best regards.
btw- from my deductions- i exclude people like dato aziz, safie abdullah who do not have the linguistic skills nor the inclination to go through technicalities. ada orang macm you, baru dpm kuat.
Mr Gondol:
thank you for further expansion on the subject.

Anonymous,  11 October 2008 at 12:51  

Mr Sak,

Apa laa dia org ni too technical bila cerita pasai sukhoi ni. setiap benda yg mahal mesti ler spec dia tinggi. takkan spec utk proton saga sama ngan spec untuk mercedes. part yg tu tak perlu ler tanya. yg penting sekarang harga asas sukhoi usd30 million each. maknanya yg lebih tu harga accessories. kalo kita tanya contractors masa bila dia org paling byk buat duit. majoriti mesti cakap pada VO (variation order) atau PC item. sebab masa dua-dua ni tak ada harga yg std terutama untuk specialised items. harga bergantung pada dealer atau manufacturer. dalam kes ni accessories yg di source dari south africa dan france adalah pada harga yg boleh di mark up. mcm mana nak bandingkan harga sebab bukan ada 10 org lam malaysia ni yg beli sukhoi.

jadi kerajaan beli pakai consultant . maka consultant malaysia ialah tok adib adam kita bekas menteri tanah dulu yg opis dia kat wisma tanah yg rentung masa dia gi umrah masa baru letak jawatan dulu.

jadi rengkas cerita tiap urus niaga ada komisen nya. pengeluar siap2 dah include harga introducer/broker kat dalam usd30 million tu. kat sini jer dah kenyang muntah. pas tu pada harga accessories pulak. kat sini yg kenyang giler2. so tak payah nak tanyaler wheter dia org yg terlibat wat duit ke tidak along the way.

jika tidak tak kan ler kak ros kita boleh beli jam nak cecah harga sebuah sekolah rendah baru.. fikir2 kanlah.(tang yg ni i rujuk dari blog lain)hehe.


Anonymous,  11 October 2008 at 13:56  

Mr shahftech/Mr sakmongkol,
I was impressed only by your few lines of ideas signifying the purchase of sukhoi. The rest of your comments were merely to overwhelm the readers on why the sukhoi was great and worth buying. I think your total technical write up only consume space in the blog meant for chill out reading and not serious eyes poking.
If I were a kampong folk maybe I will be impressed by your deliberated specs and history of sukhoi. But the main issue discussed here did we pay more for each unit. I totally agree with zahar and ayuna that there were ‘extras’ embedded in the total price for each unit.
Did we engaged an independent third party consultant to oversee the entire trading to make sure no transgression took place. Why were mindef relying solely only on adib adam to consult on our behalf for such an expensive purchase. There is nothing wrong to engage a 3rd party consultant for check and balance. The total fees is so trivial that may be worth far less than rosmah wrist watch. The main consultant will be paid fix on the total cost of the purchase. For the industry std may be not more than 1% for such a contract sum. Its almost USD100 million or RM350 million. So imagine how much money really shared by these people in the trading of 18 sukhois? It must be in billions of Malaysian ringgit taking into account the fact as stated by Ayuna. Sorry, my calculator is short of digits.

Pak Anjun

Anonymous,  11 October 2008 at 13:58  

Sorry, my reference was from comments by Zawi and Ayuna and not Zahar.

sorry for the error.

Pak Anjun

zorro 11 October 2008 at 14:04  

Sir, my discovery of the month, was your blog. It is now on my blogroll.Your postings will make good reading with an accompanying drink. Salute.

sakmongkol AK47 aka Mat Tomoi 11 October 2008 at 14:40  

unker bernard,

i have been a follower of yr blog ever since i started reading blogs. you remind me of my english teacher in Kuantan a long time ago.
although we may differ in political inclinations on certain issues, i have always been open minded about yr writings. my salute to you sir.

Erotomania 11 October 2008 at 21:42  

Takde hal, Zahar. Selamat Hari Raya.

  © Blogger templates Newspaper III by 2008

Back to TOP